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ABSTRACT
Establishing visual correspondence is one of the most fundamental
tasks in many applications of computer vision fields. In this paper
we propose a robust image matching to address the affine variation
problems between two images taken under different viewpoints. Un-
like the conventional approach finding the correspondence with local
feature matching on fully affine transformed-images, which provides
many outliers with a time consuming scheme, our approach is to find
only one global correspondence and then utilizes the local feature
matching to estimate the most reliable inliers between two images.
In order to estimate a global image correspondence very fast as vary-
ing affine transformation in affine space of reference and query im-
ages, we employ a Bhattacharyya similarity measure between two
images. Furthermore, an adaptive tree with affine transformation
model is employed to dramatically reduce the computational com-
plexity. Our approach represents the satisfactory results for severe
affine transformed-images while providing a very low computational
time. Experimental results show that the proposed affine-invariant
image matching is twice faster than the state-of-the-art methods at
least, and provides better correspondence performance under view-
point change conditions.

Index Terms— Image matching, viewpoint robust, feature,
ASIFT, fully affine space, Bhattacharyya distance, tree

1. INTRODUCTION

Establishing visual correspondence is a fundamental task in com-
puter vision applications such as image stitching [1], localization
systems [2], 3-D reconstruction [3], and so on. To estimate reliable
correspondence between two images, many literatures have been
tried to develop a local feature matching scheme. Generally, local
feature-based image matching methods consist of three steps; the
feature extraction step, the feature description step, and the feature
matching step [4].

First of all, to extract a reliable key-point in an image, many
local feature detectors have been proposed such as Harris, Harris-
Laplace, Harris-Affine, Difference of Gaussians (DoG), Maximally
Stable Extremal Region (MSER), Features from Accelerated Seg-
ment Test (FAST) and so on [5][6][7]. Secondly, to describe each
key-point properly, intensity-based descriptors such as Binary Ro-
bust Independent Elementary Features (BRIEF) [8] and Binary Ro-
bust Invariant Scalable Keypoints (BRISK) [9] and order-based de-
scriptors such as center-symmetric local binary pattern (CS-LBP)
[10] and Haar-like compact local binary pattern (HC-LBP) [11] have
been proposed. As a pioneer work, the Scale Invariant Feature Trans-
forms (SIFT) proposed by Lowe [12] has been one of the most pop-
ular approaches due to its high robustness under various environ-

ments. In order to reduce computational complexity, Bay et al. pro-
posed the Speeded-Up Robust Features (SURF) [6] which approx-
imates to SIFT and it outperforms other existing methods. Finally,
to find the nearest correspondence, a handful of Euclidean distances
can be used in practice, such as normalized cross correlation (NCC)
[6]. Although these conventional image matching approaches show
the satisfactory performance under various environments, they have
still limitations to deal with the severe distortion induced by a view-
point variation or affine variation problem.

To alleviate these limitations, many literatures tried to develop
affine-invariant feature detector or descriptor such as Hessian-affine
[12], Harris-affine [13], MSER [14], and affine subspace representa-
tion (ASR) [15]. However, these approaches have also shown the
limited performance on affine variations in real outdoor environ-
ments. As one of the most promising works, Morel and Yu have pro-
posed a fully affine invariant framework, i.e., Affine-SIFT (ASIFT),
for different viewpoint images matching [16]. The ASIFT simulates
the reference and query image to cover the fully affine space. The
local SIFT matching is then performed to extract and compare fea-
tures from these simulations. Through the iterative algorithm, the
geometric transformation between the image pair is estimated. Al-
though the ASIFT has shown in reliable matching for various affine
variations, it also provides dramatically many outliers and requires
a high computational complexity. To overcome the problems of
ASIFT, [17] proposed the iterative solver to find homography ma-
trix of two images, which the reference image is then matched with
the simulated image. In [5], local stable regions are extracted from
the reference image and the query image, and transformed to cir-
cular areas according to the second-order moment. Although these
methods trying to solve the affine variation problems show the per-
formance under small viewpoint change, they also still have limita-
tions under challenging viewpoint variations and also require high
computational complexities.

In this paper, we propose an affine invariant image matching
scheme to solve the viewpoint variation problems between reference
and query image while providing a low computational complexity.
Unlike the conventional ASIFT method which require the extensive
local feature matching on each fully affine transformed-images, our
approach first find the optimal global affine transformation match-
ing and then estimate the reliable inliers on optimal transformed-
images. The optimal affine transformation matrix of two images is
found very fast using the Bhattacharyya similarity measure without
the loss of information of the sub-sampling. In order to reduce the
complexity during the process of estimating the affine transforma-
tion matrix, the global matching based on Bhattacharyya distance is
conducted with the adaptive tree scheme. Our approach enables one
to estimate the reliable affine transformation model with very low



Fig. 1. The block diagram of the proposed scheme for affine-invariant image matching.

computational time. In order to evaluate our proposed approach, we
tested on four databases taken under varying affine transformation.
Experimental results show that our approach provides the reliable
performance even under challenging affine variations.

The remainder of this paper is organized as follows. In Sec. 2,
we briefly introduce the affine space model. In Sec. 3, we propose
a fast affine-invariant image matching to solve viewpoint variation
problems. Sec. 4 describes the experimental results for viewpoint
variation conditions, followed by the conclusion in Sec. 5.

2. REVIEW OF AFFINE TRANSFORMATION

Let an image be f : I → R or R3, where I = {i = (xi, yi)} ⊂ N2

is a discrete image domain. Assume that the image f is transformed
by any affine transformation matrixA, which is the representative of
a viewpoint change and can be characterized as follows:

A = HλR1(ψ)TtR2(φ)

= λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]
,

(1)

where φ and t are the latitude angles of the camera optical axis and
transition tilt, respectively. The ψ angle is the camera spin, and λ
represents the zoom parameter. Since the tilt can be represented as
t = 1/cos θ for θ ∈

[
−π

2
, π
2

]
, the affine transformation model is

controlled by two variations including θ and φ [16]. More detail
definition was reviewed in [16]. This affine transformation matrix
induces the coordinate of original image as

I′ = A · I. (2)

With this relationship, an affine transformed image f ′ from im-
age f is computed by affine matrix A bas f ′ : I′ → R or R3.

3. FAST AFFINE-INVARIANT IMAGE MATCHING

In this section, we propose robust and fast affine-invariant image
matching model based on the global correspondence with Bhat-
tacharyya similarity measure and adaptive tree.

3.1. Problem Statements and Overview

As a pioneer work for affine-invariant image matching, the ASIFT
approach defines all fully affine spaces of image in the latitude θ
and longitude φ. It applies all affine matrixes through the sam-
pling scheme of latitude and longitude to the reference and query

images. By matching all applied images with local feature corre-
spondence, e.g., SIFT, it provide robust image matching for affine
variation. However, a sub-sampling scheme used to reduce the com-
putational complexity induces the loss of information. Furthermore,
it requires too many unnecessary transformation and local matching,
which induces the number of outliers rapidly increased. To tackle
these problems, our approach aims to find best viewpoint parame-
ter between two images (reference image fr and query image fq)
through the global matching in the re-sampling between reference
and query affine space. It enables us to provide affine invariant im-
age matching between reference and query images.

Fig. 1. shows the overall block diagram of the proposed affine-
invariant image matching scheme. First of all, our approach trans-
forms reference image into fully affine space and a query image into
partial affine space. The Bhattacharyya coefficient is extracted from
each image for the comparison of two images transformed in the vir-
tual affine space. Furthermore, the adaptive tree is organized follow-
ing the Bhattacharyya distance between images gradationally trans-
formed in the affine space. According to the organized tree, two
images find the best affine matrix which has the closest distance.
Finally, we estimatiate the local feature correspondence on affine-
transformed images.

3.2. Global Image Matching with Adaptive Tree

In this section, we introduce fast global matching scheme between
virtually generated images and adaptive tree for computational effi-
ciency. As in Sec. 2, affine transformation for reference and query
images can be expressed as follows:

Ai = HλR(ψi)TtiR(φi), (3)

where i ∈ {r, q}, and r and q denote reference and query image,
respectively.

First of all, the latitude θ is sampled in geometric progression
form (e.g., 1, a, a2, ., an, a > 1), which induces corresponding tilt
as t = 1/cos θ. The interval of sampling is established as a =√

2, kb/t < 180, tmax ≈ 4
√

2, ∆φ = 72◦ in light of the exact-
ness and efficiency of creating a viewpoint in three dimensional co-
ordinates. In ASIFT, the longitude φ is sampled in arithmetic pro-
gression form (e.g., 0, b/t, ., kb/t, b ' 72). However, unlike con-
ventional approach such as the ASIFT [16], our approach does not
perform the fully affine transformation to reduce the computational
complexity and outliers. In our approach, the longitude of reference
and query images are differently defined as{

φi ∈ {0, b/t, ., kb/t, b ' 72},
φj ∈ {b/t, b = C}, (4)



where φi and φj are reference and query image of longitude. Al-
though the reference image performs the fully affine transformation
as f ′r(ti, φi), the query image is transformed by stages to decide
whether to transform or match depending on the matched global
matching as in as f ′q(tj , φj).

In case of query image, the tree is organized as performing the
transform and matching from latitude θ and longitude φ defined in
the affine space model. When organizing the tree, it is divided into
two seeds within the range stage. Tree cost is decided by the Bhat-
tacharyya distance of between reference and query images which
will be described in Sec. 3.3. Our adaptive tree has following crite-
ria

DBH(f ′r(ti, φi), f
′
q(tj , φj)) > DBH(f ′r(ti, φi), f

′
q(tj+1, φj+1)).

(5)
That is, as Eq. (5), the parent node in an adaptive tree deter-

mines the child node. For example, it has the same the latitude
θ of the tilt stage (t =

√
2, φ ∈ {0, b/t, 2b/t, 3b/t}). At this

time, global matching is performed only fixed ranges of longitude
φ when being able to divide the left node and right node and two
seeds are provided in the same way as the next tilt stage (t = 2,
φ ∈ {0, 2b/t} or {3b/t, 4b/t}).

By using this adaptive tree, we efficiently estimate optimal affine
parameter of reference and query image as

(t∗r , φ
∗
r , t
∗
q , φ
∗
q)

= argmin(ti,φi,tj ,φj)DBH(f ′r(ti, φi), f
′
q(tj , φj)). (6)

where (t∗r , φ
∗
r) and (t∗q , φ

∗
q) is the optimal affine parameters of refer-

ence and query image, respectively.
Finally, after transforming reference and query images by using

the optimal affine parameters (t∗r, φ∗r, t∗q, φ∗q), the local feature
correspondence scheme is employed to estimate the affine-invariant
correspondence between reference and query images.

3.3. Bhattacharyya Similarity Measure

Our approach requires fast global image matching between affine
transformed images. In order to estimate a global image distance
very fast, we employ the Bhattacharyya distances. Its coefficient is
an approximate measurement of the amount of overlap between two
statistical samples [18], [19]. The coefficient can be used to deter-
mine the relative closeness of the two samples being considered. In
order to measure distance simply, we used a 5D histogram of the
Labxy values in the image fi for i ∈ {r, q} as H(fi) = hist(fi),
where the space was quantized into [10, 10, 10, 2, 2] bins. For two
5D histogramsH(fr) andH(fq), are calculated as follows:

DBH(fr, fq) =

(
1−

(
H(fr)

TH(fq)
)1/2

)1/2

(7)

where Dbh means Bhattacharya distance which measures the simi-
larity of between two images. Compared to conventional histogram
intersection or Euclidean distance, it provides fast and reliable global
image distance [18].

3.4. Computational complexity analysis

To analyze the performance in terms of computational complexity,
we define the computational time of one SIFT matching as arith-
metic 1 for the sake of simplicity. When using the fully affine sam-
pling method designated in ASIFT, complexity of fully transforma-
tions and low-resolution SIFT matching are performed for the ref-
erence and query image as

(
(1 + (|Tn| − 1) 180

72
)/(K ×K)

)2
=

(a) Graffiti (b) Adam (c) Booth (d) Box

Fig. 2. Some samples of the test data sets taken under affine de-
formation. The first rows are samples of reference images, and the
second and third rows are samples of query images.

Table 1. Descriptions of the test data sets in experiments.

Datasets Resolution Total frames

Morel [20] Adam 600 x 450 9
Mikolajczyk [21] Graffiti 800 x 600 6

DIML [22] Booth 320 x 240 330
Box 640 x 480 335

1.5, where |Tn| means simulated tilt as
∣∣{1,√2, 2, 2

√
2, 4, 4

√
2}

∣∣.
K × K = 3 × 3 is the subsampling factor. The complexity of
ASIFT algorithm is therefore (1.5)2 = 2.25 times as much as that
of SIFT. However, the ASIFT increases number of feature points
and matching dramatically. Therefore, the actually processing time
much larger 5 is consumed compared to SIFT. Furthermore, the
ISIFT consist of initial local matching for homography estimation,
similarity checking, and local matching process. Accordingly, the
processing time of ISIFT more than 2 or 3 times is consumed com-
pared to SIFT at least. In case of our method, it does not perform the
fully affine transformation for both reference and query images due
to using adaptive tree. Also, local matching which has high complex-
ity is replaced by global matching effectively. Proposed algorithm
effectively removed and replaced by a part of the high complexity
and the computational complexity minimized. Therefore, the pro-
cessing time of our method consumed 1.2 times compared to SIFT,
approximately.

4. EXPERIMENTS

4.1. Experimental Environments

To evaluate the proposed method compared to state-of-the-art meth-
ods on affine variations, we build our database taken under varying
viewpoint conditions [22] and use public affine variation database
[20], [21]. Our viewpoint variation image database [22] is made
by rotating objects leftward, center-ward, and upward as shown in
Fig. 2. Table 1 shows the description of the affine transformation
databases used in our experiments in detail. In order to evaluate the
performance of the proposed affine image matching, the following
criteria were used to quantify the evaluation results; i) Number of
total correct match pairs (NCM), ii) Matching precision (MP) is the
radio between the NCM and the number of matches (NCM/Matches)
[17]. The higher the MP and NCM value, the more accurate image



Table 2. Average matching rates.

Adam Graffiti

Methods NCM MP (%) NCM MP (%)

SIFT 11 25 6 25
ASIFT 332 52 451 42
Harris-affine+ISIFT 38 76 18 56
MSER+ISIFT 31 54 17 50
Proposed method 32 79 27 70
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Fig. 3. Matching results in DIML video frames. (a) and (b) are NCM
and MP of SIFT and proposed algorithm in booth set, and (c) and (d)
are NCM and MP of SIFT and proposed algorithm in box set.

matching performance. However, if NCM value is high and MP is
low, it means poor reliability. We implemented our approach in C++
on Intel Core i7-4790k CPU at 4.00 GHz, and measured the runtime
on a single CPU core without further code optimizations and parallel
implementation using multi-core CPUs/GPU.

4.2. Experimental Results

In experiments, SIFT [12], Affine-SIFT [16], ISIFT [17], and the
proposed approach were evaluated. Furthermore, the Harris-affine
[13] and MSER [14] were used for finding the initial homography
matrix used in ISIFT [17]. The parameter values of the algorithm
used were set as the same ideal value. Table 2 shows that the pro-
posed method has the best matching rate for Adam and Graffiti
database, which is better than Harris-Affine + ISIFT. As described
in the previous section, the ASIFT provides too many outliers to de-
crease the reliable matching ratio as in MP. However, our proposed
method has shown the satisfactory NCM and MP performance,
which means it provides the most reliable matching.

Fig. 3. shows the evaluation on MP and NCM of our ap-
proaches and SIFT for box and booth database. The SIFT shows
that it has small NCM and uncertain MP under viewpoint change
conditions. However, similar to previous experiments, the proposed
algorithm shows satisfactory NCM and MP under challenging view-
point change conditions. Fig. 4 shows qualitative evaluation on
image matching results with the proposed algorithm for several

(a) SIFT (b) Proposed

Fig. 4. Affine-invariant image matching results for SIFT and pro-
posed method. (from top to bottom) Adam, Graffiti, Booth, and Box.
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Fig. 5. Comparison of complexity using SIFT, ASIFT, H-ISIFT, M-
ISIFT and proposed algorithm.

databases. As shown in Fig. 5, the proposed approach reduces the
computational complexity dramatically compared to the conven-
tional image matching except for SIFT. The video results and data
sets for affine-invariant image matching can be found in [22].

5. CONCLUSION

Conventional image correspondence algorithms cannot be applica-
ble to the real outdoor environment where several viewpoint vari-
ations occur frequently. To alleviate these problems, we have pro-
posed the affine-invariant image matching to solve the viewpoint
problems while providing a low computational complexity. Our
approach has tried to find optimal one global correspondence and
utilize the local feature matching to estimate the most reliable in-
liers between two images. We further optimize our approach with
the Bhattacharyya similarity measure and adaptive tree in order to
improve the complexity performance of the image matching. Ex-
perimental results show that our proposed algorithm improves the
matching performance for the viewpoint changing conditions with
four times faster than the conventional algorithms. In further works,
our approach will be reformulated to solve more challenging affine
variations.
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